
Algorithms & Data Structure I

Syrian Private University

Instructor: Dr. Mouhib Alnoukari

QUEUES AND DEQUES

3

Queues, and Deques

• A queue is a first in, first out (FIFO) data
structure

– Items are removed from a queue in the same
order as they were inserted

• A deque is a double-ended queue—items can
be inserted and removed at either end

Abstract Queue

An Abstract Queue (Queue ADT) is an abstract
data type that emphasizes specific operations:

– Uses a explicit linear ordering

– Insertions and removals are performed individually

– There are no restrictions on objects inserted into
(pushed onto) the queue—that object is designated
the back of the queue

– The object designated as the front of the queue is the
object which was in the queue the longest

– The remove operation (popping from the queue)
removes the current front of the queue

Abstract Queue

Also called a first-in–first-out (FIFO) data

structure

– Graphically, we may view these operations as

follows:

Abstract Queue

Alternative terms may be used for the four

operations on a queue, including:

Abstract Queue

There are two exceptions associated with

this abstract data structure:

– It is an undefined operation to call either pop

or front on an empty queue

Applications

The most common application is in client-server
models
– Multiple clients may be requesting services from one or

more servers

– Some clients may have to wait while the servers are busy

– Those clients are placed in a queue and serviced in the
order of arrival

Grocery stores, banks, and airport security use
queues

Most shared computer services are servers:
– Web, file, ftp, database, mail, printers, WOW, etc.

Applications

For example, in downloading these presentations from

the ECE 250 web server, those requests not currently

being downloaded are

marked as ―Queued‖

Implementations

We will look at two implementations of

queues:

– Singly linked lists

– Circular arrays

Requirements:

– All queue operations must run in Q(1) time

Linked-List Implementation

Removal is only possible at the front with Q(1) run time

The desired behaviour of an Abstract Queue may be
reproduced by performing insertions at the back

Front/1st Back/nth

Find Q(1) Q(1)

Insert Q(1) Q(1)

Erase Q(1) Q(n)

12

Array implementation of queues

• A queue is a first in, first out (FIFO) data structure

• This is accomplished by inserting at one end (the rear) and
deleting from the other (the front)

• To insert: put new element in location 4, and set rear to 4

• To delete: take element from location 0, and set front to 1

17 23 97 44

0 1 2 3 4 5 6 7

myQueue:

rear = 3front = 0

13

Array implementation of queues

• Notice how the array contents “crawl” to the right as elements are
inserted and deleted

• This will be a problem after a while!

17 23 97 44 333After insertion:

23 97 44 333After deletion:

rear = 4front = 1

17 23 97 44Initial queue:

rear = 3front = 0

Array Implementation

A one-ended array does not allow all

operations to occur in Q(1) time

Front/1st Back/nth

Find Q(1) Q(1)

Insert Q(n) Q(1)

Erase Q(n) Q(1)

Array Implementation

Using a two-ended array, Q(1) are possible by pushing at the back

and popping from the front

Front/1st Back/nth

Find Q(1) Q(1)

Insert Q(1) Q(1)

Remove Q(1) Q(1)

Member Functions

Suppose that:
– The array capacity is 16

– We have performed 16 pushes

– We have performed 5 pops
• The queue size is now 11

– We perform one further push

In this case, the array is not full and yet we cannot
place any more objects in to the array

Member Functions

Instead of viewing the array on the range

0, …, 15, consider the indices being cyclic:

…, 15, 0, 1, …, 15, 0, 1, …, 15, 0, 1, …

This is referred to as a circular array

Member Functions

Now, the next push may be performed in

the next available location of the circular

array:

++iback;

if (iback == capacity()) {

iback = 0;

}

Exceptions

As with a stack, there are a number of options
which can be used if the array is filled

If the array is filled, we have five options:
– Increase the size of the array

– Throw an exception

– Ignore the element being pushed

– Put the pushing process to ―sleep‖ until something
else pops the front of the queue

Include a member function bool full()

Increasing Capacity

Unfortunately, if we choose to increase the capacity, this becomes

slightly more complex

– A direct copy does not work:

Increasing Capacity

There are two solutions:

– Move those beyond the front to the end of the array

– The next push would then occur in position 6

Increasing Capacity

An alternate solution is normalization:

– Map the front back at position 0

– The next push would then occur in position 16

23

Circular arrays

• We can treat the array holding the queue elements as
circular (joined at the ends)

44 55 11 22 33

0 1 2 3 4 5 6 7

myQueue:

rear = 1 front = 5

• Elements were added to this queue in the order 11, 22,
33, 44, 55, and will be removed in the same order

• Use: front = (front + 1) % myQueue.length;
and: rear = (rear + 1) % myQueue.length;

24

Full and empty queues

• If the queue were to become completely full, it would look
like this:

• If we were then to remove all eight elements, making the queue
completely empty, it would look like this:

44 55 66 77 88 11 22 33

0 1 2 3 4 5 6 7

myQueue:

rear = 4 front = 5

0 1 2 3 4 5 6 7

myQueue:

rear = 4 front = 5
This is a problem!

25

Full and empty queues: solutions

• Solution #1: Keep an additional variable

• Solution #2: (Slightly more efficient) Keep a gap between
elements: consider the queue full when it has n-1 elements

44 55 66 77 88 11 22 33

0 1 2 3 4 5 6 7

myQueue:

rear = 4 front = 5count = 8

44 55 66 77 11 22 33

0 1 2 3 4 5 6 7

myQueue:

rear = 3 front = 5

26

Linked-list implementation of queues

• In a queue, insertions occur at one end,
deletions at the other end

• Operations at the front of a singly-linked list
(SLL) are O(1), but at the other end they are O(n)
– Because you have to find the last element each time

• BUT: there is a simple way to use a singly-linked
list to implement both insertions and deletions
in O(1) time
– You always need a pointer to the first thing in the list
– You can keep an additional pointer to the last thing

in the list

27

SLL implementation of queues

• In an SLL you can easily find the successor of a
node, but not its predecessor
– Remember, pointers (references) are one-way

• If you know where the last node in a list is, it’s
hard to remove that node, but it’s easy to add a
node after it

• Hence,
– Use the first element in an SLL as the front of the

queue
– Use the last element in an SLL as the rear of the

queue
– Keep pointers to both the front and the rear of the

SLL

28

Enqueueing a node

17

Node to be

enqueued

To enqueue (add) a node:

Find the current last node

Change it to point to the new last node

Change the last pointer in the list header

2344

last
first

97

29

Dequeueing a node

• To dequeue (remove) a node:

– Copy the pointer from the first node into the header

44 97 23 17

last
first

30

Queue implementation details

• With an array implementation:
– you can have both overflow and underflow

– you should set deleted elements to null

• With a linked-list implementation:
– you can have underflow

– overflow is a global out-of-memory condition

– there is no reason to set deleted elements to
null

31

Deques

• A deque is a double-ended queue

• Insertions and deletions can occur at either
end

• Implementation is similar to that for queues

• Deques are not heavily used

• You should know what a deque is, but we
won’t explore them much further

Abstract Deque

An Abstract Deque (Deque ADT) is an abstract data structure which

emphasizes specific operations:

– Uses a explicit linear ordering

– Insertions and removals are performed individually

– Allows insertions at both the front and back of the deque

Abstract Deque

The operations will be called

front back

push_front push_back

pop_front pop_back

There are four errors associated with this
abstract data type:

– It is an undefined operation to access or pop
from an empty deque

Applications

Useful as a general-purpose tool:

– Can be used as either a queue or a stack

Problem solving:

– Consider solving a maze by adding or

removing a constructed path at the front

– Once the solution is found, iterate from the

back for the solution

Implementations

The implementations are clear:

– We must use either a doubly linked list or a

circular array

